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Abstract—This paper investigates the problem of state feed-
back stabilisation for discrete nonlinear singularly perturbed
system with time-delay which is represented by a coupled
multimodel. Based on an appropriate Lyapunov function, new
sufficient conditions are given as a set of Linear Matrix Inequali-
ties (LMIs) that are used to get the gains of controllers. Numerical
example is given to illustrate the effectiveness of the proposed
method.

I. I NTRODUCTION

In the past three decades, singularly perturbed system (SPS)
have been intensively studied due to their ability to represent
many industriel systems which are characterized by slow and
fast dynamics and in the majority of cases these systems
are also non-linear. This increases their complexity. Subse-
quently, traditional methods of analysis and synthesis become
inefficient. In recent years, many techniques of simplification
have been developed to reduce the complexity of modeling,
control and analysis [4]. In most studies, the reduction of this
complexity leads to a lack of information. This reduction is
achieved either by neglecting certain phenomena (chemical
reaction for example), or by elimination of certain parameters
which do not have a significant importance on the dynamics
of the system [[5], [4], [6], [7]]. Therefore, it is necessary to
use another powerful technique to confront these problems.In
this context, we will focus on the multimodel approach that
is known by its power to handle with complex systems. In
deed, this approach represents a powerful tool for modeling,
observation and control of complex systems [8]. The basic
idea of this approach is to decompose the global problem into
a set of sub-problems that are simpler and easier to solve.
On the other hand, time-delay is commonly encountered in
several industriel system. It can lead to instability or can
degrade the performance of systems. Thus, it is important
to design a controller that stabilize the closed loop system.
Several research have studied the control problem for nonlin-
ear singularly perturbed system [[9], [10], [11], [13], [12]].
In [[9], [10]], controller design for continuous-time nonlinear
SPS with time-delay has been treated. However, these results
can not handel with discrete-time cases. In [13], the problem
of state feedback stabilization for fuzzy SPSs is treated. But,

time-delay wasn’t considered in this work. Chen et al. were
investigated a control problem for discrete-time time-delay
fuzzy SPS was described by fuzzy ”IF-THEN” rules [11]. Liu
et al. were considered the controller design for discrete-time
fuzzy SPS under the fast-time version [15]. But this class of
system does not always conserve the time scale character [14].
This paper present a new result on state feedback stabilization
for discrete-time time-delay nonlinear SPS with slow rate
which known by its preservation of time scale character. First,
the discrete nonlinear SPS is represented by a discrete coupled
multimodel by using Convex Polytopic Transformation (CPT).
After that, based on an appropriate Lyapunov function, a new
method for designing a controller is presented.
This paper is organized as follow. In section 2, nonlinear SPS
with time-delay (NSPSD) and its representation with a coupled
multimodel are represented. The main results are given in
section 3, where the state feedback stabilization problem is
treated. Simulation results for a discrete NSPSD show the
effectiveness of the presented method in section 4. In section
5, a conclusion finishes this paper.

II. COUPLED MULTIMODEL REPRESENTATION OF

DISCRETENONLINEAR SINGULARLY PERTURBEDSYSTEM

WITH TIME-DELAY

Consider a discrete non linear singularly perturbed system
(NLSPS) with time-delay:

x1(k + 1) = fNL(x1(k), x2(k), x1(k − d), x2(k − d), u(k))
x2(k + 1) = εgNL(x1(k), x2(k), x1(k − d), x2(k − d), u(k))

(1)
where x1 ∈ Rn, x2 ∈ Rm are system states andu(k) is
control input.
d: positif integer which is the time-delay.
ε: is a small positive parameter.
fNL : Rn × Rm → Rn andgNL : Rn ×Rm → Rm.
The discrete NLSPS with time-delay (1) can be represented by
a coupled multimodel using Convex Polytopic Transformation
(CPT). This method does not present an error of approximation
and the choice of decision variable is realized in a systematic
way [16]. It assumes that all non constant terms are bounded.
If r is the number of nonlinearity distincts existent in nonlinear
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system (1), then the obtained multimodel is composed of2r =
Nm sub-models.
The following Lemma will be used to manipulate the nonlinear
term.
Lemma 1 [16]
Let H(x(t), u(t)) a continuous and bounded function on the
domainD ⊂ R

n × R
m → R,

with x ∈ R
n andu ∈ R

m.
Then there are two functionsGi (i = 1, 2)

Gi : D 7→ [0, 1]
(x(t), u(t)) 7→ Gi(x(t), u(t))

(2)

G1(x(t), u(t)) +G2(x(t), u(t)) = 1, with:

H(x(t), u(t)) = G1(x(t), u(t)).H1 +G2(x(t), u(t)).H2

For all H1 ≥ maximumx,u∈DH(x(t), u(t)),
H2 ≤ minimumx,u∈DH(x(t), u(t))
The functionsG1 andG2 are given as follow:

G1(x(t), u(t)) =
H(x(t), u(t)) −H2

H1 −H2
(3)

G2(x(t), u(t)) =
H1 −H(x(t), u(t))

H1 −H2
(4)

In particular:H1 = maximumx,u∈DH(x(t), u(t)) andH2 =
minimumx,u∈DH(x(t), u(t))
The CPT can be summarized by the following steps.
Step 1:Write the system Eqn. (1) as a quasi linear parameter
varying (quasi-LPV) form:

x(k+1) = Aε(x1(k), x2(k))x(k)+Dε(x1(k), x2(k))x(k−d)
(5)

where Aε(x1(k), x2(k)) ∈ R
n×n and Dε(x1(k), x2(k)) ∈

R
n×n.

r1 is the number of nonlinear terms inAε(x1(k), x2(k)).
r2 is the number of nonlinear terms inDε(x1(k), x2(k)).
r = r1 + r2
Step 2: Set up the bound of each nonlinear term in
Aε(x1(k), x2(k)) andDε(x1(k), x2(k)).
Step 3: Let
Hj(x1(k), x2(k)), j = 1, ..., r are the nonlinear term in
Aε(x1(k), x2(k)) andDε(x1(k), x2(k)).
Each nonlinear termHj(x1(k), x2(k)), j = 1, ..., r
can be written according to itsG1(x1(k), x2(k)), its
G2(x1(k), x2(k)), its maximum (H1) and its munimum (H2)
according to lemma 1.
To each sub-modeli corresponds a p-upletσi that codes the
partitions of the decision variables existing in the correspond-
ing weighting function.
The weighting functionµi(x1(k), x2(k)), i = 1, .., Nm is
obtained by multiplying the functionG

j,σ
j
i
(x1(k), x2(k)) that

describe the partitions of the decision variable:

µi(x1(k), x2(k)) =

r
∏

j=1

G
j,σ

j
i
(x1(k), x2(k)) (6)

whereσj
i is the index in thejth position in the p-upletσi.

Aε(x1(k), x2(k)) can be written as a linear combination of
constant matrixAj(ε):

Aε(x1(k), x2(k)) = A0(ε) +
∑

j∈EA

Hj(x1(k), x2(k))Aj(ε)

(7)
where EA includes all the indexes corresponding to the
premises variables that exist inAε(x1(k), x2(k)).
A0(ε) and Aj(ε) have the same dimension of the matrix
Aε(x1(k), x2(k)).
All the constant element ofAε(x1(k), x2(k)) are found in
A0(ε).
For the matrix Aj(ε), at the position corresponding to
Hj(x1(k), x2(k)), the constant element is equal to 1 and the
other remaining positions are equal to zero.
Using the equation (7), the matrixAi(ε), i = 1, ...Nm is given
as follow:

Ai(ε) = A0(ε) +
∑

j∈EA

z
j,σ

j
i
Aj(ε) (8)

Dε(x1(k), x2(k)) can be found in the same way.
Step 4: Write the system in the form of multimodel and
calculate the weighting functionsµi(x), i = 1...Nm.
The coupled multimodel is given as follow:

x(k + 1) =
Nm
∑

i=1

µi(ξ(k))Ai(ε)x(k) +
Nm
∑

i=1

µi(ξ(k))Di(ε)

x(k − d) +
Nm
∑

i=1

µi(ξ(k))Bi(ε)u(k)

(9)
where

x(k) =

[

x1(k)
x2(k)

]

, Bi(ε) =

[

Bi1

εBi2

]

Ai(ε) =

[

Ai11 Ai12

εAi21 εAi22

]

, Di(ε) =

[

Di11 Di12

εDi21 εDi22

]

Nm is the number of sub-models,i = 1, 2, ...Nm.

Ai11, Ai12, Ai21, A22, Di11, Di12, Di21, Di22, Bi1 andBi2

are appropriate dimension matrices.
µi(ξ(k)) are the weighting functions that ensure the transi-
tion between the sub-models. They are characterized by the
following properties:

Nm
∑

i=1

µi(ξ(k)) = 1, ∀k (10)

0 ≤ µi(ξ(k)) ≤ 1, ∀k, i = 1, 2, ...Nm (11)

ξ(k) is the decision variable. It can be signal input, signal
output or system state.
The system (9) can be written as:

x(k + 1) = Ā(ε)x(k) + D̄(ε)x(k − d) + B̄(ε)u(k) (12)
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where

Ā(ε) =

Nm
∑

i=1

µi(ξ(k))Ai(ε), D̄(ε) =

Nm
∑

i=1

µi(ξ(k))Di(ε)

B̄(ε) =

Nm
∑

i=1

µi(ξ(k))Bi(ε) (13)

In the following, we propose to design a multimodel control
law , which is given as follow:

u(k) = K̄x(k), K̄ =

Nm
∑

i=1

Ki (14)

Then the resulting closed-loop system is given by:

x(k + 1) = ĀBF (ε)x(k) + D̄(ε)x(k − d) (15)

where
ĀBF (ε) = Ā(ε) + B̄(ε)K̄

We recall the following lemmas, in order to establish our main
results.

Lemma 2 [1]:
For any positive scalarε∗, if the following conditions are
verified:

F1 ≥ 0,

ε∗2F1 + ε∗F2 + F3 < 0,

F3 < 0,

then we get

ε2F1 + εF2 + F3 < 0, for ε ∈ [0, ε∗]

Lemma 3 [2]:
Let V ∈ R

n1 , W ∈ R
n2 andN ∈ R

n1∗n2 .
Then for any matricesM ∈ R

n1∗n1 , S ∈ R
n1∗n2 and Z ∈

R
n2∗n2 satisfying:

[

M S

ST Z

]

≥ 0, we have,

−2V TNW ≤
[

V

W

]T [

M S −N

ST −NT Z

] [

V

W

]

(16)

III. STABILISATION OF NONLINEAR SINGULARLY

PERTURBEDSYSTEM WITH TIME-DELAY REPRESENTED BY

A COUPLED MULTIMODEL

Theorem 1
Consider the system (9).
Let the positif realε∗ > 0 and d > 0 a positive integer, if
there exist symmetric matrices define positifX > 0, Q̃ > 0
andM̃ , R̃ a symmetric matrix and matrices̃W , K̃ satisfying
the following LMIs:

Ω̃
′

ii(ε
∗) < 0 (17)

Ω̃
′

ii(0) < 0 (18)

Ω̃
′

ij(ε
∗) + Ω̃

′

ji(ε
∗) < 0 (19)

Ω̃
′

ij(0) + Ω̃
′

ji(0) < 0 (20)

[

R̃ W̃

W̃T M̃

]

≥ 0 (21)

where

Ω̃
′

ij(ε) =









(1, 1) ∗ ∗ ∗
(2, 1) (2, 2) ∗ ∗
(3, 1) (3, 2) (3, 3) ∗
(4, 1) (4, 2) (4, 3) (4, 4)









(22)

with
(1, 1) = −X + dR̃ + W̃T + W̃ + Q̃

(2, 1) = −W̃T

(2, 2) = −Q̃

(3, 1) = Ai(ε)X +Bi(ε)K̃j

(3, 2) = Di(ε)X
(3, 3) = −X

(4, 1) =
√
dAi(ε)X +

√
dBi(ε)K̃j −

√
dX

(4, 2) =
√
dDi(ε)X

(4, 3) = 0
(4, 4) = M̃ − 2X

Then there exists a controller given by equation (23) such
that the closed loop system is asymptotically stable∀ε ∈
[0, ε∗].

u(k) =

Nm
∑

i=1

Kix(k), avec, Ki = K̃iX
−1 (23)

Proof
We consider the following Lyapunov-Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k) (24)

where
V1(k) = xT (k)Px(k)

V2(k) =
k−1
∑

i=k−d

xT (i)Qx(i)

V3(k) = d
(−1)
∑

θ=−d

k−1
∑

i=k+θ

ηT (i)Mη(i), η(i) = x(i + 1)− x(i)

with P , Q andM are symmetric and positive definite matrices.

Since η(i) = x(i + 1)− x(i)

then we have:

x(k − d) = x(k) −
k−1
∑

i=k−d

η(i) (25)

Substituting (25) into (12), we obtain:

x(k + 1) = Add(ε)x(k)−D(ε)

k−1
∑

i=k−d

η(i) (26)
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with Add(ε) = Ā(ε) + B̄(ε)K̄ + D̄(ε)

∆V1(k) = V1(k + 1)− V1(k)

= xT [ĀT
dd(ε)PĀdd(ε)−P ]x(k)−2

k−1
∑

i=k−d

xT (k)ĀT
dd(ε)PD̄(ε)

η(i) +NT (k)D̄T (ε)PD̄(ε)N(k)

(27)

whereN(k) =
∑k−1

i=k−d η
T (i)

Posingθ = ĀT
dd(ε)PD̄(ε) and using Lemma 3, we obtain:

∆V1(k) ≤ xT [ĀT
dd(ε)PĀdd(ε)−P+dR+WT−θT+W−θ

+D̄T (ε)PD̄(ε)]x(k)+xT (k)[−W+θ−D̄T (ε)PD̄(ε)]x(k−d)

+ xT (k − d)[−WT + θT − D̄T (ε)PD̄(ε)]x(k) + xT (k − d)

[D̄T (ε)PD̄(ε)]x(k − d) +
k−1
∑

i=k−d

ηT (i)Mη(i) (28)

with R, W andM satisfying the following condition:
[

R W

WT M

]

≥ 0 (29)

∆V2(k) is given as:

∆V2(k) = xT (k)Qx(k)− xT (k − d)Qx(k − d) (30)

∆V3(k) can be written as follow:

∆V3(k) = dxT (k)ĀT
BF (ε)MĀBF (ε)x(k)+dxT (k)ĀT

BF (ε)

MD̄(ε)x(k−d)+dxT (k−d)D̄T (ε)MĀBF (ε)x(k)

+ dxT (k − d)D̄T (ε)MD̄(ε)x(k − d)

−
k−1
∑

i=k−d

η(i)Mη(i) (31)

with ĀBF (ε) = Ā(ε) + B̄(ε)K̄ − I

∆V (k) is given as follow:

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k)

≤ xT (k)[ĀT
dd(ε)PĀdd(ε)− P + dR+WT − θT +W − θ

−D̄T (ε)PD̄(ε)+Q+dĀT
BF (ε)MĀBF (ε)]x(k)+xT (k)[−W

+ θ− D̄T (ε)PD̄(ε)+dĀT
BF (ε)MD̄(ε)]x(k−d)+xT (k−d)

[−WT + θT − D̄T (ε)PD̄(ε) + dD̄T (ε)MĀBF (ε)]x(k)

+ xT (k − d)[D̄T (ε)PD̄(ε)−Q+ dD̄T (ε)MD̄(ε)]x(k − d)

≤ ξT (k)Ω(ε)ξ(k)

(32)

where

ξ(k)T =

[

x(k)
x(k − d)

]T

Ω(ε) =

[

Ω11(ε) ∗
Ω21(ε) Ω22(ε)

]

with

Ω11(ε) = [ĀT (ε)+ K̄T B̄T (ε)]P [Ā(ε)+ B̄(ε)K̄]−P +dR

+WT +W +Q + dĀT
BF (ε)MĀBF (ε)]

Ω21(ε) = −WT+D̄T (ε)P [Ā(ε)+B̄(ε)K̄]+dD̄T (ε)MĀBF (ε)

Ω22(ε) = D̄T (ε)PD̄(ε)−Q+ dD̄T (ε)MD̄(ε)

∆V (k) < 0, ∀ε ∈ [0, ε∗] if and only if:

Ω(ε) < 0, ∀ε ∈ [0, ε∗] (33)

Applying the Schur Complement twice on (33), we get:

Ω
′

(ε) =









Ω
′

11(ε) ∗ ∗ ∗
Ω

′

21(ε) Ω
′

22(ε) ∗ ∗
Ω

′

31(ε) Ω
′

32(ε) Ω
′

33(ε) ∗
Ω

′

41(ε) Ω
′

42(ε) Ω
′

43(ε) Ω
′

44(ε)









< 0 (34)

with
Ω

′

11(ε) = −P + dR+WT +W +Q

Ω
′

21(ε) = −WT

Ω
′

22(ε) = −Q

Ω
′

31(ε) = Ā(ε) + B̄(ε)K̄
Ω

′

32(ε) = D̄(ε)
Ω

′

33(ε) = −P−1

Ω
′

41(ε) =
√
dĀ(ε) +

√
dB̄(ε)K̄ −

√
dI

Ω
′

42(ε) =
√
dD̄(ε)

Ω
′

43(ε) = 0
Ω

′

44(ε) = −M−1

Multiplying equation (34) on the left and right bydiag =
{P−1, P−1, I, I} and posing the following equalities:
X = P−1, R̃ = P−1RP−1, W̃ = P−1WP−1, Q̃ =
P−1QP−1, K̃ = K̄P−1

we get:

Ω̃(ε) =








Ω̃11(ε) ∗ ∗ ∗
Ω̃21(ε) Ω̃22(ε) ∗ ∗
Ω̃31(ε) Ω̃32(ε) Ω̃33(ε) ∗
Ω̃41(ε) Ω̃42(ε) Ω̃43(ε) Ω̃44(ε)









< 0 (35)

where
Ω̃11(ε) = −X + dR̃ + W̃T + W̃ + Q̃

Ω̃21(ε) = −W̃T

Ω̃22(ε) = −Q̃

Ω̃31(ε) = Ā(ε)X + B̄(ε)K̃
Ω̃32(ε) = D̄(ε)X
Ω̃33(ε) = −X

Ω̃41(ε) =
√
dĀ(ε)X +

√
dB̄(ε)K̃ −

√
dX

Ω̃42(ε) =
√
dD̄(ε)X

Ω̃43(ε) = 0
Ω̃44(ε) = −M−1

SinceM is a symmetric positive-definite matrix, we have:

(X −M−1)M(X −M−1) > 0 (36)
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Inequality (36) can be rewritten as:

XMX − 2X > −M−1 (37)

According to (37), we know that the following inequality is
sufficient to inequality (35):

Ω̃
′

(ε) =








Ω̃
′

11(ε) ∗ ∗ ∗
Ω̃

′

21(ε) Ω̃
′

22(ε) ∗ ∗
Ω̃

′

31(ε) Ω̃
′

32(ε) Ω̃
′

33(ε) ∗
Ω̃

′

41(ε) Ω̃
′

42(ε) Ω̃
′

43(ε) Ω̃
′

44(ε)









< 0 (38)

where
Ω̃

′

11(ε) = −X + dR̃+ W̃T + W̃ + Q̃

Ω̃
′

21(ε) = −W̃T

Ω̃
′

22(ε) = −Q̃

Ω̃
′

31(ε) = Ā(ε)X + B̄(ε)K̃
Ω̃

′

32(ε) = D̄(ε)X
Ω̃

′

33(ε) = −X

Ω̃
′

41(ε) =
√
dĀ(ε)X +

√
dB̄(ε)K̃ −

√
dX

Ω̃
′

42(ε) =
√
dD̄(ε)X

Ω̃
′

43(ε) = 0
Ω̃

′

44(ε) = M̃ − 2X

with M̃ = XMX .

Substituting (13) into (38), we get

Ω̃
′

(ε) =

Nm
∑

i=1

µ2
i (ξ(k))Ω̃

′

ii(ε)+

Nm
∑

i<j

µi(ξ(k))µj(ξ(k))[Ω̃
′

ij(ε) + Ω̃
′

ji(ε)] < 0 (39)

whereΩ̃
′

ij(ε) is given by equation (22).

It is easy to know that inequalities (40) and (41) are
sufficient to inequality (39)

Ω̃
′

ii(ε) < 0, ∀ε ∈ [0, ε∗] (40)

and
Ω̃

′

ij(ε) + Ω̃
′

ji(ε) < 0, ∀ε ∈ [0, ε∗] (41)

By using Lemma 2, conditions (40) and (41) are satisfied if
LMIs (17),(18), (19) and (20) are feasible.
whereR, W andM satisfying the inequality (29).
Multiplying (29) on the left and on the right by
diag{P−1, P−1}, we get:

[

R̃ W̃

W̃T M̃

]

≥ 0 (42)

Therefore, the closed loop system is asymptotically stable
∀ε ∈ [0, ε∗], if LMIs (17),(18), (19), (20) and (21) are
feasible. This completes the proof.

IV. N UMERICAL EXAMPLE

The considered discrete nonlinear singularly perturbed sys-
tem with time delay is:

x(k+1) =

[

0.7 0.3x2(k)
0.8ε ε

]

x(k)+

[

0.12 0.42
εsin(x1(k)) 0.37ε

]

x(k − d) +

[

1
0.9ε

]

u(k) (43)

with x(k) =
[

x1(k) x2(k)
]T

Assume that| x2(k) |≤ 2.
Non-constant terms arex2(k) andsin(x1(k)).
By using the CPT, we get a multimodel composed of22 = 4
sub-models.
According to Lemma 1,x2(k) andsin(x1(k)) can be written
respectively as follow:

x2(k) = F1,1(x2(k)).2 + F1,2(x2(k)).(−2) (44)

sin(x1(k)) = F2,1(x1(k)).1 + F2,2(x1(k)).(−1) (45)

with
F1,1(x2(k)) = 0.25(x2(k) + 2)
F1,2(x2(k)) = 0.25(2− x2(k))
F2,1(x1(k)) = 0.5(sin(x1(k)) + 1)
F2,2(x1(k)) = 0.5(1− sin(x1(k)))
Considering the expression ofx2(k), it can written as follow:

[

0.7 0.3x2(k)
0.8ε ε

]

= F1,1(x2(k))

[

0.7 0.6
0.8ε ε

]

+ F1,2(x2(k))

[

0.7 −0.6
0.8ε ε

]

(46)

In order to make the partition functions appearF2,1(x1(k))
andF2,2(x1(k)), we multipy Eqn. (46), with the sum of these
two function which is equal to 1. So, we get the following
expression:

[

0.7 0.3x2(k)
0.8ε ε

]

= F1,1(x2(k))F2,1(x1(k))

[

0.7 0.6
0.8ε ε

]

+ F1,1(x2(k))F2,2(x1(k))

[

0.7 0.6
0.8ε ε

]

+ F1,2(x2(k))F2,1(x1(k))

[

0.7 −0.6
0.8ε ε

]

+ F1,2(x2(k))F2,1(x1(k))

[

0.7 −0.6
0.8ε ε

]

(47)

[

0.12 0.42
εsin(x1(k)) 0.37ε

]

can be found in the same way.

Then, we get the following coupled multimodel:

x(k+1) =

4
∑

i=1

µi(ξ(k)) [Ai(ε)x(k) +Di(ε)x(k − d) +Bi(ε)u(k)]

(48)
with

A1(ε) = A3(ε) =

[

0.7 −0.6
0.8ε ε

]
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A2(ε) = A4(ε) =

[

0.7 −0.6
0.8ε ε

]

D1(ε) = D2(ε) =

[

0.12 0.42
ε 0.37ε

]

D3(ε) = D4(ε) =

[

0.12 0.42
−ε 0.37ε

]

B1(ε) = B2(ε) = B3(ε) = B4(ε) =
[

1 0.9ε
]T

µ1(k) = 0.125[x2(k) + 2][sin(x1(k)) + 1]

µ2(k) = 0.125[2− x2(k)][sin(x1(k)) + 1]

µ3(k) = 0.125[x2(k) + 2][1− sin(x1(k))]

µ4(k) = 0.125[2− x2(k)][1 − sin(x1(k))]

By solving the LMIs of theorem 1 withε = 0.4215 and
d = 1 , we get:

X =

[

10.2012 −1.5983
−1.5983 11.4832

]

, Q̃ =
[

5.9256 −0.8860
−0.8860 6.0323

]

, M̃ =

[

0.5210 −0.3113
−0.3113 4.9017

]

R̃ =

[

0.1821 −0.0700
−0.0700 1.4834

]

, W̃ =
[

−0.3052 0.0996
0.1944 −2.6944

]

, K̃1 =
[

−4.4144 −7.2908
]

K̃2 =
[

−5.9895 4.8588
]

, K̃3 =
[

−3.8300 −7.2115
]

,
K̃4 =

[

−5.9047 4.8004
]

Then
K1 =

[

−0.5441 −0.7106
]

, K2 =
[

−0.5325 0.3490
]

,
K3 =

[

−0.4844 −0.6954
]

K4 =
[

−0.5248 0.3450
]

Then, the closed loop system is asymptotically stable
∀ε ∈ [0, 0.4215] andd ∈]0, 1] as shown in figure 2.
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Fig. 1. Evolution des tats en boucle ouverte avecε = 0.4215 et un retard
d = 1

From the simulation results, it can be seen that the controller
has been able to improve the bound stability of the closed-loop
system.
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Fig. 2. Evolution des tats en boucle ferme avecε = 0.4215 et un retard
d = 1
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Fig. 3. Evolution de la commande du systme avecε = 0.4215 et un retard
d = 1

V. CONCLUSION

State feedback stabilization is proposed for discrete nonlin-
ear SPS with time-delay. The considered system is represented
by a discrete coupled multimodel. Sufficient conditions forthe
existence of state feedback controller are obtained based on an
appropriate Lyapunov function. Simulation example is given
to illustrate the effectiveness of the presented method.

ACKNOWLEDGMENT

This work was supported by the ministry of Higher Educa-
tion and Scientific Research in Tunisia.

REFERENCES

[1] ABDELJAWAD, R., BAHRI, N., et LTAIEF, M. Stability boundanalysis
of slow sampling discrete-time singularly perturbed systems with time-
delay. In : Sciences and Techniques of Automatic Control andComputer
Engineering (STA), 2017 18th International Conference on.IEEE, 2017.
p. 1-5.

[2] WU, Huai-Ning. Delay-dependent stability analysis andstabilization
for discrete-time fuzzy systems with state delay: A fuzzy Lyapunov-
Krasovskii functional approach. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 2006, vol. 36, no 4, p. 954-962.

User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.1-7



[3] CHEN, Jinxiang. Fuzzy singularly perturbed modeling and composite
controller design for nonlinear multiple time-scale systems with time-
delay. Fuzzy Sets and Systems, 2014, vol. 254, p. 142-156.

[4] NAGY, Anca Maria, MOUROT, Gilles, MARX, Benot, et al. Systematic
multimodeling methodology applied to an activated sludge reactor model.
Industrial & Engineering Chemistry Research, 2010, vol. 49, no 6, p.
2790-2799.

[5] MOORE, Bruce. Principal component analysis in linear systems: Con-
trollability, observability, and model reduction. IEEE transactions on
automatic control, 1981, vol. 26, no 1, p. 17-32.

[6] PETZOLD, Linda et ZHU, Wenjie. Model reduction for chemical kinet-
ics: An optimization approach. AIChE journal, 1999, vol. 45, no 4, p.
869-886.

[7] SAYSEL, Ali Kerem et BARLAS, Yaman. Model simplificationand
validation with indirect structure validity tests. SystemDynamics Review,
2006, vol. 22, no 3, p. 241-262.

[8] Ben Atia, Samah. Sur l’observation et la commande des systèmes non
linéaires incertains et /ou à retard par l’approche. 2017. Thse de doctorat.
Ecole Nationale d’Ingénieurs de Gabès.

[9] LIU, Huaping, SUN, Fuchun, HE, Kezhong, et al. Fuzzy control for
nonlinear singularly perturbed systems with time-delay. In : Systems,
Man and Cybernetics, 2003. IEEE International Conference on. IEEE,
2003. p. 798-803.

[10] SUN, Chao, WANG, Fuli, et HE, Xiqin. Delay-dependent stability and
stabilization criteria for TS fuzzy singular systems with interval time-
varying delay by improved delay partitioning approach. SpringerPlus,
2016, vol. 5, no 1, p. 349.

[11] CHEN, Jinxiang, ZHANG, Xiaoda, HUANG, Jian, et al. Fuzzy robust
controller with time-delay design for discrete-time fuzzysingularly per-
turbed systems with time-delay. In : Control and Decision Conference
(CCDC), 2015 27th Chinese. IEEE, 2015. p. 6533-6536.

[12] YANG, Zhigang et CHEN, Jinxiang. ROBUST STABILIZATIONFOR
DISCRETE-TIME FUZZY SINGULARLY PERTURBED SYSTEMS.
Metalurgia International, 2013, vol. 18, no 5, p. 210.

[13] CHEN, J., SUN, F., YIN, Y., et al. State feedback robust stabilisation
for discrete-time fuzzy singularly perturbed systems withparameter
uncertainty. IET control theory & applications, 2011, vol.5, no 10, p.
1195-1202.

[14] NAIDU, D. S., PRICE, D. B., et HIBEY, J. L. Singular perturbations
and time scales (SPaTS) in discrete control systems-an overview. In :
Decision and Control, 1987. 26th IEEE Conference on. IEEE, 1987. p.
2096-2103.

[15] LIU, Huaping, SUN, Fuchun, et SUN, Zengqi. Stability analysis and
synthesis of fuzzy singularly perturbed systems. IEEE Transactions on
Fuzzy Systems, 2005, vol. 13, no 2, p. 273-284

[16] NAGY, Anca Maria, MOUROT, Gilles, MARX, Benot, et al. Systematic
multimodeling methodology applied to an activated sludge reactor model.
Industrial & Engineering Chemistry Research, 2010, vol. 49, no 6, p.
2790-2799.

User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.1-7




