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Abstract—This paper investigates the problem of state feed- time-delay wasn’t considered in this work. Chen et al. were
back stabilisation for discrete nonlinear singularly perturbed jnvestigated a control problem for discrete-time timeagel
system with time-delay which is represented by a coupled fuzzy SPS was described by fuzzy "IF-THEN" rules [11]. Liu
multimodel. Based on an appropriate Lyapunov function, new . . o
sufficient conditions are given as a set of Linear Matrix Ineaali- et al. were considered the_controlle_r design for d'SCMt
ties (LMIs) that are used to get the gains of controllers. Nurerical  fuzzy SPS under the fast-time version [15]. But this class of
example is given to illustrate the effectiveness of the pragsed system does not always conserve the time scale character [14
method. This paper present a new result on state feedback stalailizat
for discrete-time time-delay nonlinear SPS with slow rate
which known by its preservation of time scale charactestFir

In the past three decades, singularly perturbed system) (SB discrete nonlinear SPS is represented by a discretéecbup
have been intensively studied due to their ability to repnés multimodel by using Convex Polytopic Transformation (CPT)
many industriel systems which are characterized by slow aAéter that, based on an appropriate Lyapunov function, a new
fast dynamics and in the majority of cases these systemsthod for designing a controller is presented.
are also non-linear. This increases their complexity. 8ubsThis paper is organized as follow. In section 2, nonlinea® SP
qguently, traditional methods of analysis and synthesioimec with time-delay (NSPSD) and its representation with a cedpl
inefficient. In recent years, many techniques of simplifarat multimodel are represented. The main results are given in
have been developed to reduce the complexity of modelirggction 3, where the state feedback stabilization problem i
control and analysis [4]. In most studies, the reductiorhef t treated. Simulation results for a discrete NSPSD show the
complexity leads to a lack of information. This reduction igffectiveness of the presented method in section 4. Ina@ecti
achieved either by neglecting certain phenomena (chemi&ala conclusion finishes this paper.
reaction for example), or by elimination of certain parasngt

. 4 ; . Il. COUPLED MULTIMODEL REPRESENTATION OF
which do not have a significant importance on the dyn:’;1m|(]‘:§|SCRETENONLINEAR SINGULARLY PERTURBED SYSTEM
of the system [[5], [4], [6], [7]]- Therefore, it is necesgan
use another powerful technique to confront these probléms. ) ) WITH T”\/_'E_DEL.AY
this context, we will focus on the multimodel approach that Con3|der.a dilscrete non linear singularly perturbed system
is known by its power to handle with complex systems. INLSPS) with time-delay:
deed, this approach represents a powerful tool for modeling:, (k + 1) = Inr(z1(k), z2(k), 21 (k — d), 2o(k — d), u(k))
observation and control of complex systems [8]. The basig,(k + 1) = egnr(x1(k), 2o (k), 21 (k — d), x2(k — d), u(k))
idea of this approach is to decompose the global problem into (1)

a set of sub-problems that are simpler and easier to solve.wherex; € R", x2 € R™ are system states andk) is

On the other hand, time-delay is commonly encountered éontrol input.

several industriel system. It can lead to instability or cath positif integer which is the time-delay.

degrade the performance of systems. Thus, it is importantis a small positive parameter.

to design a controller that stabilize the closed loop systerfiyy : R* x R™ — R™ andgyr : R™ x R™ — R™.

Several research have studied the control problem for monliThe discrete NLSPS with time-delay (1) can be represented by
ear singularly perturbed system [[9], [10], [11], [13], [L2 a coupled multimodel using Convex Polytopic Transformatio
In [[9], [10]], controller design for continuous-time naméar (CPT). This method does not present an error of approximatio
SPS with time-delay has been treated. However, these sesaltd the choice of decision variable is realized in a systemat
can not handel with discrete-time cases. In [13], the prablewvay [16]. It assumes that all non constant terms are bounded.
of state feedback stabilization for fuzzy SPSs is treated, BIf r is the number of nonlinearity distincts existent in nonéine

I. INTRODUCTION
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system (1), then the obtained multimodel is compose2i 6 whereo? is the index in thej* position in the p-upletr;.

i

N,,, sub-models. Ac(z1(k),z2(k)) can be written as a linear combination of
The following Lemma will be used to manipulate the nonlinearonstant matrix4; (¢):

term.

Lemma 1 [16] Ac(wr(k), (k) = Ao(e) + D Hj(w1(k), wa(k))A,; (e)

Let H(x(t),u(t)) a continuous and bounded function on the JEEA

()
where E4 includes all the indexes corresponding to the
premises variables that exist i (x1(k), x2(k)).

Ap(e) and A;(e) have the same dimension of the matrix

domainD C R™ x R™ — R,
with z € R™ andu € R™.
Then there are two functiors; (i =1, 2)

Gi:Dw— [O, 1] 2 AE(xl(k)va(k))
(z(t), u(t)) = Gy(z(t), u(t)) (@) All(the constant element ofA. (z1(k),z=2(k)) are found in
AQ E).

Gi(a(t), u(t)) + Gz(z(t), u(t)) = 1, with: For the matrix A;(e), at the position corresponding to

H;(z1(k),z2(k)), the constant element is equal to 1 and the
H(z(t), u(t)) = Gi(a(t), u(t)-Hi + Ga(x(t), u(t))-H2 other remaining positions are equal to zero.

For all H; > mazimumeg, e pH (z(t), u(t)), Using the equation (7), the matrik;(¢), i = 1,...N,, is given
Hy < minimumg yepH (2(t), u(t)) as follow:
The functionsG; and G, are given as follow:
vnetionstn 2 are given as Toflow Ai(e) = Ao(e) + Y 7 i 45(e) 8)
JEEA
G (2(t), u(t)) = H(z(t), u(t) — He 3) De(@i(k),z2(k)) can be found in the same way.
Hy, — Hy Step 4: Write the system in the form of multimodel and

calculate the weighting functions;(z), = 1...N,.

_ = Hz(t), u®) (4) The coupled multimodel is given as follow:

Ga(z(t), u(t))

Hi — Hy

In particular:Hy, = maxzimumg yepH (x(t), u(t)) and Hy = N, N,
minimum, e pH (x(t), u(t)) (kb +1) = 3o pi(E(k)Ai(e)x(k) + 3o pwa(€(k))Dile)
The CPT can be summarized by the following steps. =1 N =1
Step 1: Write the system Eqn. (1) as a quasi linear parameter z(k —d) + o i (€(k))B;(e)u(k)
varying (quasi-LPV) form: i=1 ©)
w(k+1) = Ac(z1(k), v2(k))x(k) + De (1 (k), 22 (k))x(k—d)  where

) w1 (k B;
where A, (z1(k), zo(k)) € R™" and D, (z1(k), z2(k)) € z(k) = [ m;gkg ] Bi(e) = { EE;,IQ ]
RXn v
r1 is the number of nonlinear terms i (z1 (k), z2(k)). Afe) — A1 A Di(e) — Dii1 Dio
ro is the number of nonlinear terms B (z(k), z2(k)). i(e) = eAion Ao |7 i(e) = eDio1  €Djoo
r=r1+7r2

Step 2: Set up the bound of each nonlinear term in Vm i the number of sub-models= 1,2, ... Ny.

A (z1(k), 22(k)) and De (w1 (k), w2 (k))-
Step 3: Let Airn, Az, Aio1, Az2, Dint, Dinz, Dio1, Dis2, Bin and B,

Hj(z1(k),22(k)), j = 1,..,r are the nonlinear term in @€ @ppropriate dimension matrices.

AL (21 (k), 22 (k) and D (1 (k), 22 (k)). ui(&(k)) are the weighting functions that ensure the transi-
E;ch n(;nlinear termEHj(xl(}c) k), § o= 1,.. tion between the sub-models. They are characterized by the
can be written according to itsGy(zy(k), z2(k)), its Tollowing properties:

Ga(z1(k), z2(k)), its maximum () and its munimum Hs) N,

according to lemma 1. > pil€(k) =1, Vk (10)

To each sub-model corresponds a p-uplet; that codes the i=1

partitions of the decision variables existing in the copesl-
ing weighting function.

The weighting functionu; (z1(k), z2(k)), i = 1,.., Ny IS ¢(k) is the decision variable. It can be signal input, signal
obtained by multiplying the functioﬁ?mg (x1(k), x2(k)) that output or system state.

describe the partitions of the decision variable: The system (9) can be written as:

0< pui(€k) <1, Vk, i=1,2,...Np, (11)

i@ (k), 2 (k) = ]1;[1 Cjor(malk)r2B) O 1) Aealh) + BE)alk — d) + Beyu(k)  (12)

CopyrightIPCO-201¢
ISSN 2356-5608


User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.1-7


Internationallournalof Control, EnergyandElectricalEngineering CEEE
Vol.7 pp.1-7

where . .
€)= wil€(k)Ai(e), D(e) = u€(k)Dile
= N:L:l Q,;;(0) +Q,,(0) <0 (20)
B(e) = Y mi(K)Bi(e) (13) o
i= R W
{ . } >0 (21)
In the following, we propose to design a multimodel control wo M
law , which is given as follow: where
_ _ n (1,1) * * *
u(k) = Kz(k), K =) _K; (14) G| @D @2 o« s 22)
= dE =130 32 6.3
Then the resulting closed-loop system is given by: (4,1) (4,2) (4,3) (4,4)

z(k+1) = App(e)z(k) + D(e)z(k — d) (15) Wwith

(1,1)=-X+dR+WT +W +Q
where (2,1) = —WT
Apr(e) = A(e) + B(e)K (2,2) = )
We recall the following lemmas, in order to establish ourmnalg’ ;% B g ((i-))i(( + Bile)K;
results. (3’ 3) — o
Lemma 2 [1]: ol UNE.
For any positive scalae*, if the following conditions are (4,1) = \/EAZ(E X +VdBy(e)K; — VX
Y (4,2) = VdD;(e)X
verified: (4.3) =0
£ 20, (4,4) = M — 2X
eF + " Fy + F3 <0, _ _ .
Then there exists a controller given by equation (23) such
F3 <0, that the closed loop system is asymptotically staiie €
0,e*].
then we get 0,¢7]
eFi+eFy + F3 <0, for e€0,e"] u(k) =Y Kix(k), avee, K; = K; X! (23)
Lemma 3 [2]: 4
Let V e R™, W € R™ and N € Rm1*nz2, Proof . ) .
Then for any matricesd € R™*™, § ¢ R™*m2 and Zz ¢ We consider the following Lyapunov-Krasovskii functional
R™2*72 gatisfying: { % ; ] > 0, we have, V (k) = Vi(k) + Va(k) + Vs(k) (24)
v 1T M  S-N][V where
o/ T - Vi(k) = 2T (k)Px(k
QVNWS[W} [STNT , HWJ () =2l (B)Palh)
16) Va(k) = Z a™ (1) Qe (i)
[1l. STABILISATION OF NONLINEAR SINGULARLY ) k=l , , ) ,
PERTURBED SYSTEM WITH TIME-DELAY REPRESENTED BY Va(k) = de_zzdzz%en (@)Mn(), n() = 2(i+1) = (i)
A COUPLED MULTIMODEL with P, @ andM are symmetric and positive definite matrices.
Theorem 1 ) ) , ,
Consider the system (9). Since (i) = w(i + 1) — (i)

Let the positif reals* > 0 andd > 0 a positive integer, if ihen we have:

there exist symmetric matrices define posiif> 0, @ > 0 .
and M, R a symmetric matrix and matricd®’, K satisfying

the following LMIs: z(k —d) zk: 0 (25)

Ju

d
Qui(e) <0 (17) Substituting (25) into (12), we obtain:

E

-1

Q:,(0) <0 (18) (k +1) = Aga(e)a :Zk:dn i) (26)

3
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with Agq(e) = A(e) + B(e)K + D(e)
AVi(k) =Vi(k+1) = Vi(k)
k-1
= a1 [AGq(e)P Aga(e)— Pla(k)—2 ol (k) Agq(e)PD(e)
i=k—d

(27)

where N (k) = 320~ _qan"(9)
Posingd = AL,(¢)PD(¢) and using Lemma 3, we obtain:

AV (k) < 2T [AT (e)PAyq(e)—P+dR+WT —0T +W -0
+DT(e)PD(e)|x(k)+a (k)[-W+0—DT (¢)PD(¢))x(k—d)
2T (k — d)[-WT + 67 — DT (e)PD(e)]z(k) + = (k — d)
k—1
[DT(e)PD(e)]x(k — d) + " () Mn(i)

i=k—d

(28)

with R, W and M satisfying the following condition:
R W
] =
AV;(k) is given as:
(k)Qz(k) —

AV3(k) can be written as follow:

(29)

AVy(k) = T 2l (k—d)Qxz(k—d)  (30)

AV3(k) = da (k)AL p(e)M App(e)x(k)+dx™ (k) ALz (g)

MD(e)x(k— )+dw (k—d)D" ()M App(e)x(k)
+da” (k — d)D" ()M D(e)x(k — d)
k—1
- n'é)Mi(i) (31)
i=k—d
with App(e) = A(e) + B(e)K — I
AV (k) is given as follow:
AV (k) = AV (k) + AVa(k) + AVs(k)
< 2T (k)AL (e)PAga(e) = P+dR+WT — 07 + W — 0
—D"(e)PD(e)+Q+dApp () MApr(e)|a(k)+a” (k)[-W

+60—DT(e)PD(e )+dA ()M D(e)]x(k —d) + 2T (k—d)
[-WT + 07 — DT()PD(e) + dD* (e)M Apr(e)|x(k)
2" (k — d)[D* (e)PD(e) — Q + dD™ ()M D(e))x(k — d)

<& (k)Q(e)E(k)
(32)

where .

z(k)
= i
Q11(e) *
() { (S D(®) ]

CopyrightlPCO-201!
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with
Qui(e) = [A"(e)+ K" B (¢)|P[A(e) + B(e)K] — P+dR
+WT W+ Q4+ dAL ()M Apr(e)]

Qo1(e) = —WT4+DT(e)P[A(e)+B(e)K|+dDT (e)M App ()

Q92(e) = DY (€)PD(e) — Q + dD™ ()M D(¢)
AV (k) <0, Ve € [0,e*] if and only if:

Qe) <0, Ve € ]0,e"] (33)
Applying the Schur Complement twice on (33), we get:
B o .
/ Qy1(e) Qyule * *
PO e o) o o« [0 G
Qi(e) Quale) Qzle) Quule)
with
Q)1(e) = —P+dR+WT + W +Q
Q;l(s) =-wT
922(5) =-Q o
Qs,(¢) = Ale) + B(e) K
9;32(5) = D(e)
Qus(e) = —P~ ! o
Qy(e) = \/84(5) +VdB(e)K — VdI
Qya(e) = VdD(e)
Qy3() =0
Que)=-M""

Mult|ply|ng equation (34) on the left and right byiag =

{P~1,P~1 1,1} and posing the following equalities:

X—PI,R—PlRpl,W—lepl Q =
P-1QP~!, K = KpP-!

we get:
Qe) =
911(5) ok * *
Q21(e) Qaa(e) =+
Qa1(e) Qs2(e) Qa3(e)  *
Qai(e) Qaz(e) Qaz(e) Qaale)
<0 (35)
where
On(e)=-X+dR+ W'+ W +Q
Qoi(e) = -WT
Qa2(e) = -Q o
Qu1() = A()X + B()K
932(5) = D(E)X
Qgs(e) = —X_ _
Qui(e) = VdA(e)X + VdB(e) K — VdX
942(5) = \/ED(€)X
943(5) =0
Q44( ) = 7M71
Since M is a symmetric positive-definite matrix, we have:
(X -MYHYMX -MY) >0 (36)
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Inequality (36) can be rewritten as: IV. NUMERICAL EXAMPLE

XMX —2X>-—-M"1 (37) The considered discrete nonlinear singularly perturbed sy

tem with time delay is:
According to (37), we know that the following inequality is y

sufficient to inequality (35): [ 0.7 0.3xa(k) 0.12 0.42
k+1) = 0.8¢ € } 2 H{ esin(z1(k)) 0.37¢ }
Q'(e) = o(k — d) + [ 0196 } u(k) (43)
Qule) o« * * '
Q1(e) Dpole) * with o (k) = [ 21 (k) x2(k) |7
Qs1(e) Qs45(e) Q35(e) * Assume that z2(k) |< 2.
Q) Que) Qa(e) Qe Non-constant terms are;(k) and sin(xz(k)).
<0 (38) By using the CPT, we get a multimodel compose®bf= 4
sub-models.
where According to Lemma 1z (k) andsin(z1(k)) can be written
Q),(e) =X + dR+WT +W +Q respectively as follow:
Qo (e) = W
Unle) = —Q ~ 2a2(k) = Fial@a(0)2 + Fua(ea(0).(-2)  (44)
051 (e) = A(©)X + B(e)K . _ B
9;2(5) _ D(E)X sm(xl(k:)) = F271(331(k3)).1 + FQ,Q(.T/'l (k‘))( 1) (45)
{gg(e) = —X i} with
V41(e) = VAA(e)X + VdB(e)K — VdX Fya(x2(k)) = 0.25(x2(k) 4 2)
~§.12(5) = \/E (g)X Fy Q(ICQ(k)) =0. 25(2 — l‘g(k))
Qys(2) = 0 Fy (21 (k) = 0.5(sin(a (K)) + 1)
Qu(e) =M —2X F>o(x1(k)) = 0.5(1 — sin(z1(k)))
_ Considering the expression of (%), it can written as follow:
with M = XMX.
Substituting (13) into (38), we get 0.7 0.3w2(k) | _ 0.7 0.6
9 (13) (38) J 0.8¢ € = Fi1(@a(k)) 0.8 ¢
Nm
.1 0.7 —-0.6
= 3 )R (e) Fam®) | g 0] @
Nm - In order to make the partition functions appeaf (z1(k))
> i (k)25 (e) + Q) < 0 (39) and F, 5 (z1 (k)), we multipy Eqn. (46), with the sum of these
i<J two function which is equal to 1. So, we get the following
whereQ;;(¢) is given by equation (22). expression:

It is easy to know that inequalities (40) and (41) are

{ 0.7  0.3z2(k)
sufficient to inequality (39)

0.8¢ € :| = F1,1($2(]€))F2,1(x1 (k‘))

oy 0.7 0.6 0.7 0.6
0,,(e) <0, Ve € [0,e"] (40) [ 08 ¢ ] + Fia(z2(k)) F22(21(K)) [ 0.8¢ ¢ ]
and B ~ 0.7 —-0.6
Qy;(e) +Qj(e) <0, Ve € [0,7] (41) + Fia(wa (k) o (21.(K)) [ 08 }
By using Lemma 2, conditions (40) and (41) are satisfied if 7 ENE f { 0.7 —0.6 } 47
LMIs (17),(18), (19) and (20) are feasible. FRa(n@)Baln®) | gg . 47)
where R, W and M satisfying the inequality (29). 0.12 0.42
Multiplying (29) on the left and on the right byjl Esm('x (k) 0 '375 can be found in the same way.
. _ _ . 1 .
diag{P~", P~'}, we get hen, we get the following coupled multimodel:
R W } :
b >0 (42)
{ Wt M 2(k+1) =Y pal§(k)) [As(e)x (k) + Di(e)x(k — d) + Bi(e)u(k)]
Therefore, the closed loop system is asymptotically stable i=1

Ve € [0,e*], if LMIs (17),(18), (19), (20) and (21) are (48)

ith
feasible. This completes the proof. wit

Ay(e) = As(e) = { 07 06 ]
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[ 0.7 -06
AQ(E) = A4(€) = I 0.8¢ c :| 0.25 —
r - x,(K)
Die) = Da(e) = | O12 2 ] o2
D3(€) = D4(€) = _ 0;1{52 00.54,71 ] 0151
Bi(e) = Ba(e) = B3(e) = Bu(e) = [ 1 0.9¢ }T .l
pua () = 0.125[wa (k) + 2] [sin (a1 (K)) + 1]
pra(k) = 0.125[2 — o ()][sin(z1(k)) + 1] oL . . - — |
us(k) = 0.125[zo(k) 4 2][1 — sin(x1(k))) Times(k)
pa(k) = 0.125[2 — za(K)][1 — sin(w1(k))] Fig. 2. Evolution des tats en boucle ferme avee= 0.4215 et un retard

By solving the LMIs of theorem 1 wite = 0.4215 and ¢=1

d=1, we get:
¥ B 102012 —1.5983 5 B ’
- —1.5983 11.4832 |’ a -01}
5.9256 —0.8860 | - [ 0.5210 —0.3113
—0.8860 6.0323 |’ ~ | —0.3113  4.9017 02
~ 0.1821  —0.0700 .
R - {0.0700 1.4834 } W - ”
—0.3052  0.0996 - 04
{ 01944 96044 ] Ky =[ —4.4144 —-7.2908 |
Ky =[ —5.9895 4.8588 |, K3 =[ —3.8300 —7.2115 ], o8y
Ky=[ —5.9047 4.8004 | ool
Then
Ky =[ —0.5441 —0.7106 |, K» = [ —0.5325 0.3490 |, 07, : m = = s
Ks=[ —0.4844 —0.6954 Times(i)
Ky =] —0.5248 0.3450 |

Then, “the closed loop system is asymptotically stabﬁEJ 3 Evolution de la commande du systme avee 0.4215 et un retard
Ve € [0,0.4215] andd €]0, 1] as shown in figure 2.

10 ‘ ‘ ‘ ‘ V. CONCLUSION
ol _?EZ State feedback stabilization is proposed for discreteinonl

’ z ear SPS with time-delay. The considered system is repr$ent
3r by a discrete coupled multimodel. Sufficient conditionstfa

existence of state feedback controller are obtained basea o

il appropriate Lyapunov function. Simulation example is give

2r 1 to illustrate the effectiveness of the presented method.
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